Resultados de medições de grandezas dosimétricas em mamografia

Feital, J.C.¹, Delgado, J.U.¹

¹ Instituto de Radioproteção e Dosimetria – IRD/CNEN

RESUMO

Foram realizadas 21 exposições em um simulador de mama real para diferentes profundidades e espessuras de compressão, onde obtiveram-se resultados de dose glandular média (D_G) e kerma no ar incidente ($K_{a,i}$), grandezas importantes quanto à estimativa do risco de carcinogênese devido à radiação e controle de qualidade em mamografia, Os primeiros resultados e comparações com dados da literatura para tais grandezas, indicam um caminho para validação da metodologia com possibilidade da utilização de tal fantoma nas avaliações dosimétricas "in loco" em mamógrafos clínicos.

1. INTRODUÇÃO

Pelo menos 20% da população mundial contrairá algum tipo de câncer ao longo da vida [1]. No caso do câncer de mama, 51% dos casos ocorreriam na faixa etária entre 45 a 64 anos [2] Dados de 2009 no Brasil, davam conta de que a região sudeste mantinha a liderança quanto ao aparecimento de câncer de mama por 100 mil mulheres com o índice de 68,1% [3]. No país, cerca de 57 mil novos casos de câncer de mama são esperados para serem detectados no ano de 2015 [4]. Da literatura [5,6] dados apontavam para um aumento do número de aparelhos de mamografia com a tecnologia digital/computadorizada (CR) na cidade do Rio de Janeiro em comparação as demais tecnologias, o que poderia elevar a Dose nesta prática do radiodiagnóstico. Tal grandeza dosimétrica de importante magnitude chama-se Dose glandular média, D_G , e é a medição experimental e o dado de cálculo semi-empírico mais relevante associado ao risco de câncer devido à exposição aos raios X [6,7].

Diante das dificuldades para a obtenção da D_G "in loco", o que em geral necessita de medições diretamente na paciente ou em simuladores, em geral compostos de polimetimetacrilato (PMMA), em que são requeridos dados teóricos de fatores de conversão [8,9], além de medições experimentais de Kerma no ar.

Sendo assim o objetivo principal deste estudo é desenvolver uma metodologia para a obtenção de D_G e K a,i para diferentes espessuras de compressão e profundidades utilizando um simulador de mama de real [10], denominado "Breast Tissue Equivalente", **BTE**, de modo à facilitar e agilizar tais medições "in loco".

2. METODOLOGIA, ARRANJO EXPERIMENTAL, RESULTADOS E DISCUSSÕES.

2.1 Comparação de dados

¹ E-mail do Autor. jfeital@ird.gov.br

A metodologia compara com dados da literatura às medições de D_G e K_{a,i} no simulador de mama real, associando a um modelo dosimétrico para validação destas medições em diferentes estudos [8,9]. Deste modo, obtido o Ka,i experimental para cada espessura de compressão e os devidos fatores de conversão da literatura , determina-se a D_G semi-empírica, que é comparada com os resultados experimentais encontrados nas exposições do BTE.

2.1.1. Procedimentos para a irradiação do simulador

Irradiou-se 21 vezes o simulador de mama (figuras 1 e 2) no mamógrafo marca siemens modelo mammomat 1000.

Figura 1 – O simulador e as fatias de 0,5 e 1,0 cm com os devidos orifícios para a colocação dos dosímetros termoluminescentes.

Figura 2 – O BTE posicionado em contato com a placa de compressão.

As exposições ocorreram na projeção cranio-caudal (CC), utilizando o modo sem-automático, inserindo-se no "bucky" do aparelho um chassis de marca Kodak modelo M2000.

A distância foco -"bucky" do aparelho é de 63,5 cm para um campo de radiação de 24 x 18 cm, centralizando o fantoma de acordo os 3 semi-círculos (foto-células/controle automático de exposição) indicados na bandeja de compressão (figura 2). As irradiações ocorreram para espessuras de compressão variando de 3,0 a 6,0 cm e profundidades no BTE de 1,0 a 3,0 cm.

2.1.2. Obtenção da D_G experimental

Seis dosímetros termoluminescentes (TLDs /LIF 100) foram colocados no BTE, sendo 3 na parte superior do simulador para a medição do Ka,i e outros 3 nas profundidades requeridas para cada espessura de compressão. Ressalta-se que, no caso, as profundidades variam de 0,5 a 0,5 cm. A porcentagem glandular (glandularidade) do simulador para as espessuras variando de 3,0 cm até 6,0 cm é de 46%.

O lote de TLDs foi calibrado de acordo com os procedimentos reportados por [11,12] e as leituras e tratamentos térmicos foram realizadas numa leitora marca Harshaw modelo 5500 com "softer WinRem" associado e um forno marca PTW. Os resultados das 3 medições (Média + Desvio Padrão; - DP) para cada grandeza são mostrados na tabela 1.e 2.

2.1.3. Tensão do tubo (kV) e camada semi- redutora (HVL)

As exposições ocorreram para 28 kV e HVL de 0,38 mm em equivalência de alumínio(Al), utilizando placas de 0,1 mm com pureza de 99%, marca Radcal. O conjunto alvo-filtro utilizado, foi de Molibdênio(Mo) / Molibidênio(Mo). O produto da corrente (mA) pelo tempo de exposição em segundos (s) foi também controlado, incluindo a tensão (kV) e HVL utilizados, seguindo os procedimentos do manual da AIEA[13]. Nestas medições utilizaram-se uma câmara de ionização e eletrômetro acoplado, marca Radcal . calibrado no Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI).

2.1.4. RESULTADOS E DISCUSSÕES

Os resultados das 3 medições (Média + Desvio Padrão; - DP) para cada grandeza são mostrados na Tabelas 1 e 2. Deste modo, mediu-se experimentalmente-se para 7 espessuras de compressão em 3 profundidades diferentes, totalizando 21 exposições no BTE. Os dados mostrados na tabela 1, chamam atenção, principalmente quando se trata das espessuras de 4,0, 5,0 e 6,0 cm -, frequentes em um grande hospital público no RJ [5], onde 5 das 6 das medições comparadas com resultados da literatura, se encontram abaixo de 15%, porcentagem adequada para tais discrepâncias[8].

Nas demais espessuras deverão ser testadas novas profundidades para as medições de D_G no BTE, uma vez que, de acordó com a literatura [14], os valores da dose podem não proporcionar a precisão requerida para tais medições, devido à heterogeneidade do tecido glandular.

Na tabela 2, os resultados de $K_{a,i}$, encontram-se dentro dos níveis aceitáveis [13,15 para as espessuras de compressão de 45 e 50 mm. O coeficiente de correlação linear - R^2 , encontrado, entre as medições da grandeza e o produto da corrente pelo tempo de exposição (mAs) para cada exposição também mostrou-se adequado.

Tabela 1. Medições de D_G (BTE) comparadas com dados semi-empíricos da literatura. Mamógrafo digital , marca GE, modelo mammomat 1000, com 28Kv, conjunto alvo-filtro (Mo/Mo) e HVL de 0,38 mm

Espessura de mama comprimida (mm)	D _G (mGy)	Dp ^a	Exatidão (%) ^d Dance ^b - R Klein ^c
30	0,704	0,034	8,0 - 18
35	1,044	0,001	17,0 - 29,0
40	1,026	0,049	6,3 - 4,3
45	0,901	0,053	54,0 - 38,0
50	1,92	0,052	13,0 - 27,0
55	2,89	0,11	24,0 - 16,3
60	2,90	0,09	5,1 - 7,8

a Desvio padrão (Dp) ; b Dance et al; c R Klein R et al; discrepância em relação ao BTE

Tabela 2. Valores experimentais de $K_{a,i}$ com os respectivos mAs para cada espessura de compressão da mama. Mamógrafo digital, marca GE, modelo mammomat 1000, com 28Kv, conjunto alvo-filtro (Mo/Mo) e HVL de 0,38 mm.

Espessura de mama comprimida	K _{a,i} , ^d (mGy)	Dp ^e	mAs ^f	Dp ^g
(mm)				
30	1,90	0,01	18,00	-
35	2,94	0,12	26,27	0,65
40	4,15	0,03	37,25	0,86
45	5,87	0,21	51,6	1,0
50	8,07	0,22	7,.9	0,1
55	12,16	0,51	101,3	0,3
60	17,47	0,06	140,3	0,2

 $_{d, f}$ - R² = 0,9989, coeficiente de correlação linear (Ka,i x mAs)

e, g - Desvio padrão (Dp) para K a,i e mAs

3. CONCLUSÕES

Os resultados obtidos no estudo se mostram adequados no caminho da validação efetiva da metodologia aplicada. O trabalho deverá, seguir abrangendo mais aparelhos de mamografia nas diferentes tecnologias, onde deverão ser realizadas novas exposições no BTE, em outros conjuntos alvo-filtro com distintas profundidades e espessuras de compressão, objetivando novas medições dosimétricas das grandezas requeridas..

4. REFERENCIAS

- 1. Gonzales A J. La protección radiológica como fundamento de la seguridad nuclear. Consejo de Seguridad Nuclear; **41**:15 34. 2006.
- 2. International Commission on Radiation Units & Measurements 2009 Mammography clinical practice. Journal of ICRU; 9, pag. 09-14.
- 3. http://www.inca2.org.br, acessado em julho de 2012.
- 4. INCA, Instituto Nacional de Câncer. Ministério da Saúde. Estimativa 2014/2015: " Incid\ência do Câncer no Brasil". Rio de janeiro: INCA, 2014.
- 5. Almeida D C . Otimização da dose e da qualidade da imagem em exames da mamografia digital. Workshop de proteção radiológica digital em medicina. Rio de Janeiro. Instituto de Radioproteção e Dosimetria. 2014
- 6. Coutinho C M . Avaliação da dose glandular em sistemas de mamografia convencional e digital utilizando um fantoma dosimétrico. Tese de Doutorado. Rio de Janeiro: PEN/COPPE/UFRJ, 2009.
- 7. Rothenberg L N . Patient Dose in mammography Radiographics 10 739-46, 1990.
- 8. R Klein; Aichinger H; Dieker J; Jansen J T M; Barfuβ J S; Sabel M; Wendtland R S; Zoetelief J. Determination of glandular dose with modern mammography units for two large groups of patients. Phys. Med. Biol. **vol.42**, pp. 651-671, UK, 1997.
- 9. Dance D R; Skinner C L; Young, K C; Beckett J R; Kotre, C.J. Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol, Phys. Med. Biol, v. 45, pp. 3225–3240, 2000.
- 10. Almeida C D, Coutinho C M, Dantas B M, Peixoto J E, Koch H A . A new mammographic dosimetric phanton. Radiation Protection Dosimetry, pp. 1-3, 2012.
- 11. Sardo L T L; Almeida C D; Coutinho C M C. Resultados Preliminares da Dose glandular média na mama, medida com TLDs e calculada através de fatores de conversão. Recife. International Nuclear Atlantic Conference (INAC),2013.
- 12. Atomic International Energy Agency 2007 An international code of practice. Technical Reports Series. Publication 457. Dosimetry in Diagnostic Radiology, Viena, 2007
- 13. Atomic International Energy Agency. Quality Control in Mammography, TECDOC 1517, Viena, 2006.
- 14. Andy KW MA; Ali A ALGHAMDI. Development of a Realistic Computational Breast Phantom for Dosimetric Simulations. Nuclear Science and Technology ,vol.2, pp.147-152, 2011.
- MS (MINISTÉRIO DA SAÚDE). Diretrizes de Proteção Radiológica em Radiodiagnóstico Médico e Odontológico – Portaria no 453- Diário Oficial da União nº 103, 02 de junho de 1998.
- 16. Atomic International Energy Agency. Quality Assurance programme for digital Mammography. Human Series 17, Viena, 2011.