DETERMINAÇÃO E SIMULAÇÃO MATEMÁTICA DA EFICIÊNCIA DE CONTAGEM PARA O ⁴⁰K USANDO DOIS CÓDIGOS DE MCs

Paiva, F.G.¹, Oliveira, A.H.¹, Da Silva, T.A.², Silva, T.V.², Alonso, T. C.², Fonseca, T.C.F.²

¹ Programa de Pós Graduação em Ciências e Técnicas Nucleares, UFMG, Brasil ² Centro de Desenvolvimento da Tecnologia Nuclear, CDTN-CNEN, Brasil

RESUMO

O Laboratório de Dosimetria Interna do Centro de Desenvolvimento da Tecnologia Nuclear em Minas Gerais, Brasil (LDI/CDTN) é responsável pela monitoração interna e rotineira dos Indivíduos Ocupacionalmente Expostos (IOEs) da Unidade de Pesquisa e Produção de Radiofármacos (UPPR/CDTN) e do reator TRIGA IPR-R1/CDTN, ou sempre que houver risco de incorporação acidental e outras emergências radiativas. Medições in vivo são usadas para a determinação e quantificação dos radionuclídeos emissores de fótons no corpo humano. Para a calibração dos sistemas de medição, é necessário o uso técnicas específicas para a obtenção de fatores de calibração (ou eficiência de contagem), que relacionam taxas de contagem e atividade presente no corpo. Este trabalho tem como objetivo a determinação e a comparação das Eficiências de Contagem (EC) calculadas: (i) experimentalmente, utilizando o simulador físico antropomórfico, BOMAB, com uma solução concentrada de Cloreto de Potássio comercial (KCl) e (ii) através de simulações matemáticas utilizando diferentes códigos de Monte Carlo (MC). O simulador físico BOMAB foi preenchido com a solução de KCl, e foram realizadas medidas em diferentes posições simulador-detector, num total de cinco séries de oito contagens consecutivas de 30 minutos para cada posição. A primeira medida foi realizada a 10 cm a partir do topo da cabeça do simulador e o detector foi movido 20 cm longitudinalmente ao longo do BOMAB entre cada posição, permitindo assim a determinação da EC (em cps/Bq) para cada uma das oito posições. Os resultados calculados experimentalmente foram comparados com simulações realizadas utilizando dois diferentes códigos de MC (VMC e MCNPX). Os resultados obtidos demonstram a equivalência entre os métodos nas condições de geometria e energia utilizadas. Este projeto contribuirá principalmente para a primeira etapa da calibração do CCI/LDI e posteriormente para a melhoria da qualidade dos resultados de monitoração in vivo, disponibilizando um laboratório devidamente calibrado.

1. INTRODUÇÃO

As instalações radiativas licenciadas pela Comissão Nacional de Energia Nuclear (CNEN) devem avaliar as doses internas em todos os Indivíduos Ocupacionalmente Expostos (IOEs) sujeitos à incorporação de radionuclídeos em áreas controladas onde há manipulação de fontes não seladas e nas quais as doses efetivas são superiores a 1 mSv [1].

A determinação quantitativa e qualitativa dos radionuclídeos emissores de fótons no corpo humano é realizada por meio de medições *in vivo*, geralmente executadas em laboratórios denominados Contadores de Corpo Inteiro (CCI), um sistema destinado à medição da radiação emitida no corpo humano. Em 2003, a Comissão Internacional de Unidades e Medidas Radioativas (ICRU) publicou o Relatório 69, intitulado "Determinação Direta de Radionuclídeos no Corpo" [2], destinado a cientistas, equipes ou organizações responsáveis

¹ E-mail do Autor. <u>fgpaiva92@gmail.com</u>

pela instalação e/ou operação de um CCI, com o intuito de fornecer orientações sobre o processo global da mensuração direta de radionuclídeos no corpo humano, tanto para proteção radiológica como em aplicações médicas.

O CCI funciona basicamente, posicionando-se o detector de radiação (por exemplo: Iodeto de Sódio (NaI(Tl)) ou Germânio (HPGe)) próximo à uma região do corpo previamente definida, normalmente tronco ou pelve. Um espectro é coletado durante a medição por um tempo definido, e a análise desse espectro permite identificar e quantificar os radionuclídeos presentes no corpo.

Os radionuclídeos que podem ser monitorados diretamente são emissores de fótons com energias e probabilidades de decaimento suficientemente altas, de forma a viabilizarem sua detecção *in vivo* [3]. Este procedimento requer a aplicação de técnicas específicas de calibração das geometrias de contagem, visando à obtenção de uma curva de eficiência, construída pela relação entre a Eficiência de Contagem (EC) e a energia do fóton emitido. A EC é usada para converter a taxa de contagem dos fótons em atividade do radionuclídeo presente no corpo do indivíduo monitorado, é obtida experimentalmente utilizando simuladores físicos antropomórficos, contendo atividades certificadas dos radionuclídeos de interesse para a área de dosimetria interna [4].

Além dos nuclídeos instáveis, alguns nuclídeos estáveis podem ter seu conteúdo corporal estimado por medições *in vivo*, como é o caso do Potássio (K). O Potássio é um elemento presente na natureza e está em todos os músculos estriados do corpo humano. O isótopo ⁴⁰K ocorre normalmente numa proporção fixa de 0,000117g de ⁴⁰K para cada 100g de K-natural, e pode ser determinado no CCI, a partir da medida do fóton emitido pelo ⁴⁰K, com energia de 1460,75 keV [5]. O sistema de medida do CCI do Laboratório de Dosimetria Interna (LDI) CDTN/CNEN utiliza um detector de cintilação de NaI(TI) com dimensões de 8"x4" para radionuclídeos de alta energia.

Contudo, para se desenvolver, implantar e consolidar uma metodologia de monitoração interna é necessário implementar métodos consistentes de calibração do sistema de detecção e estabelecer uma rotina de controle de qualidade. Deste modo é possível reportar resultados confiáveis da incorporação e estimar da dose interna. Tais métodos devem obedecer a parâmetros técnicos e administrativos, para que sejam adequadamente documentados, padronizados e executados, buscando atender normas de gestão da qualidade que visam à harmonização das práticas de monitoração realizadas entre os diferentes laboratórios de dosimetria interna.

Este trabalho tem como objetivo comparar a EC para medida de ⁴⁰K no corpo humano com detector NaI(Tl) 8"x4", utilizando o método experimental e a simulação matemática.

2. CALIBRAÇÃO DO SISTEMA

A calibração do sistema de monitoração *in vivo* é constituída por duas partes: calibração em energia e calibração em eficiência [3, 4]. Um método alternativo para obter os fatores de calibração consiste na simulação matemática do sistema de detecção utilizando o Método de Monte Carlo [6].

2.1. Calibração em Energia

A calibração em energia do sistema de detecção é dada pela relação linear entre o canal do Analisador Multicanal (MCA) e a energia do fóton emitido pelo radionuclídeo de interesse. A calibração em energia é imprescindível para a identificação do radionuclídeo.

No LDI/CDTN a calibração em energia do sistema foi realizada utilizando quatro fontes pontuais certificadas de Ba-133, Cs-137, Eu-152 e K-40, com a mesma geometria de medição para cada uma delas. O Gráfico 1 apresenta a curva de Calibração do Sistema de detecção, no qual o canal está relacionado à energia correspondente. As energias selecionadas foram 344,3, 964 e 1408 keV para o Eu-152, 356 keV para o Ba-133, 661,7 keV para o Cs-137 e 1460 para o K-40.

Gráfico 1. Curva de Calibração em Energia do Sistema

2.2. Calibração em Eficiência

A calibração em eficiência permite que seja quantificada a atividade dos radionuclídeos presentes no organismo, a partir de uma relação entre a área do fotopico de energia e a atividade do radionuclídeo de referência. A eficiência de contagem pode variar com a distância entre o detector e o posicionamento do indivíduo, com a energia do fóton, para diferentes tipos de detectores, e também em função da estrutura corporal do indivíduo a ser monitorado [3]. A EC é calculada pela equação (1) a seguir:

$$\varepsilon = \frac{N}{t \cdot Ao \cdot e^{\frac{-ln2.(t-t0)}{t^{1}/2}}}.\gamma$$
(1)

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

Sendo: *N* a área do fotopico de energia de interesse *(Contagem Fantoma- Contagem BG), t* o tempo de medição, *A* a atividade da fonte corrigida da data da certificação e γ (yield) a probabilidade de emissão gama de interesse.

2.3. BOMAB: BOttle Manikin ABsorption

O BOMAB [7] é um fantoma físico antropomórfico e representa um homem referência de 1,70m de altura e aproximadamente 70 kg, preenchido com 57,5 litros de uma solução de cloreto de potássio comercial (KCl). A solução foi preparada no Laboratório de Monitoração *In Vivo* (LABMIV) do Instituto de Radioproteção e Dosimetria (IRD) no Rio de Janeiro/RJ, Brasil e analisada pelo Laboratório de Bioanálises do IRD, para se determinar a atividade de ⁴⁰K, sendo de 2530 +/- 255 Bq/L.

2.3.1. Cálculo da Eficiência de Contagem (EC) utilizando o BOMAB

No LDI/CDTN o BOMAB foi disposto na cama com blindagem de chumbo, tipo Shadow Shield. O detector de NaI(Tl) 8"x4" foi posicionado à 53,2 cm acima da cama, e está conectado por um cabo ao micro computador, que possui instalado o software de gerenciamento e analises Canberra Genie2000 [8].

Foram realizadas cinco séries de oito contagens consecutivas. Para cada contagem, utilizouse um tempo de 30 minutos. Oito posições foram escolhidas, variando em intervalos de 20 cm a partir da primeira posição, ajustada de tal forma que o centro da base do detector ficasse a 10 cm da borda da cabeça do fantoma, varrendo todo corpo até a oitava posição. Este processo foi repetido cinco vezes para a obtenção de uma média dos valores para cada posição. A Figura 1 apresenta o posicionamento do simulador BOMAB na cama juntamente com as oito posições medidas pelo detector.

Figura 1. Esquema de posicionamento Detector/Fantoma para as oito posições

Além disso, foram realizadas três séries de três contagens do BG (*background* da sala vazia), visando ao cálculo da taxa de contagem líquida na região de interesse do ⁴⁰K. O BG é diferente para cada uma das três posições do detector, devido à diferença da geometria da blindagem da cama ao longo de todo seu eixo: (i) posição 1 do detector para as medidas 1,2, 3, 4 e 5; (ii) posição 2 para as medidas 6 e 7 e (iii) posição 3 para a 8ª medida. A Tabela 1 apresenta as eficiências de contagem calculadas para as oito diferentes posições utilizando a equação 1:

Posição	$\begin{array}{c} \varepsilon (x10^{-3} \\ \text{contagem por } \gamma \\ \text{emitida} \end{array}$	
1	0,96	
2	1,37	
3	1,73	
4	1,91	
5	1,9	
6	1,66	
7	1,41	
8	1,3	

Tabela 1. Eficiência de Contagem (ε) obtida Experimentalmente

2.4. Determinação da EC utilizando o método de Monte Carlo (MC)

Paralelamente a parte experimental, o sistema físico do CCI foi modelado e simulado utilizando dois códigos computacionais diferentes. Simulações computacionais do corpo humano utilizando códigos de Monte Carlo (MC) [9] têm sido aplicadas para calibração de sistemas *in vivo* nos últimos anos [10]. MC é um método de simulação estática que utiliza uma sequência de números aleatórios para simular diversos sistemas físicos. Esta técnica é particularmente interessante na resolução de problemas complexos que não podem ser modelados por métodos computacionais determinísticos [11].

Dois códigos de MC foram escolhidos para modelar e simular o sistema de monitoração ocupacional interna, o MCNP (*Monte Carlo N-Particle Transport Code*) [12] e o VMC (*Visual Monte Carlo*) *in-vivo* [13]. Tais códigos utilizam o método estocástico de Monte Carlo para reproduzir um processo estatístico de interação de partículas atômicas e/ou nucleares. No transporte de partículas, a técnica de Monte Carlo permite gerar aleatoriamente cada uma das muitas partículas primárias ou secundárias, a partir de uma fonte radioativa

dentro de um sistema. Os códigos computam todos os eventos, tais como: a absorção da radiação, o espalhamento compton, radiação de bremsstrahlung, produção de raios X, entre outros, durante todo o percurso de cada partícula e reportam os resultados juntamente com seus erros estatísticos. A eficiência de contagem do detector, em todos os casos, foi determinada em termos de unidades de contagens por números de partículas emitidas (cps/Bq) [10]. A Tabela 2 a seguir apresenta os dados das ECs calculadas com MC. O Gráfico 2 apresenta as eficiências de contagem simuladas pelos códigos de MC e as EC calculadas no processo experimental.

Posicão	ε (x10 ⁻³ contagem por γ emitida))	
	MCNPX	VMC
1	1,09	1,19
2	1,59	1,69
3	1,95	2,09
4	2,07	2,23
5	1,98	2,12
6	1,70	1,79
7	1,44	1,48
8	1,09	1,12

Tabela 2. Eficiência de Contagem simulada utilizando MC

Gráfico 2. ECs obtidas Experimentalmente e com os códigos MCNPX e VMC in-vivo.

3. CONCLUSÕES

Os resultados obtidos com os códigos computacionais MCNPX e VMC *in-vivo* quando comparados aos resultados obtidos experimentalmente encontram-se na faixa de aceitação, conforme o relatório escrito pela ANSI N 13.30 [14], para calibração de sistemas como o CCI. A máxima diferença encontrada está na faixa de aproximadamente 24%, quando se compara a primeira posição do VMC com o experimental. A mínima diferença encontrada foi para a posição sete, onde o valor da diferença é menor que 5% tanto para o VMC quanto para o MCNPX comparados ao experimental.

De forma geral, espera-se que este projeto venha a contribuir para a melhoria da qualidade dos resultados de monitoração *in vivo* de trabalhadores ocupacionalmente expostos do CDTN, bem como para a população em geral.

Os autores agradecem a FAPEMIG e ao projeto INCT pelo suporte financeiro e ao Instituto de Radioproteção e Dosimetria (IRD) pelo suporte com o simulador BOMAB. Pesquisa desenvolvida com o apoio do LN/IRD.

4. REFERÊNCIAS

1. International Atomic Energy Agency (IAEA) (1999). *Assessment of Occupational Exposure Due to Intakes of Radionuclides* - Safety Standards Series, no. RS-G-1.2, IAEA.

2. International Commission of Radiation Units and Measurements, "Direct Determination of the Body Content of Radionuclide," ICRU Report 69, *Journal of the ICRU*, Nuclear Technology Publishing, Vol. 3, No. 1, 2003.

3. SANTOS, L. R. *"Monitoração in vivo: análise de incertezas"*. 2012. 70 f. Dissertação (Mestrado em Ciências na área de Tecnologia Nuclear - Instituto de Pesquisas En ergéticas e Nucleares, Autarquia associada à Universidade de São Paulo. São Paulo, 2012.

4. VENTURINI, LUZIA. *"Estudo de Incertezas no Monitoramento In Vivo Utilizando a Técnica de Monte Carlo"*. 2004. 162 f. Tese (Doutorado em Ciências na área de Tecnologia Nuclear - Instituto de Pesquisas Energéticas e Nucleares, Autarquia associada à Universidade de São Paulo). São Paulo, 2004.

5. DANTAS, B. M. "*Bases para a Calibração de Contadores de Corpo Inteiro Utilizando Simuladores Físicos Antropomórficos*". 1998. 172 f. Tese (Doutorado em Biologia - Universidade do Estado do Rio de Janeiro, Instituto de Biologia, Departamento de Biofísica e Biometria). Rio de Janeiro, 1998.

6. Fonseca T C F, Bogaerts R, Hunt J, Vanhavere F. A methodology to develop computational phantoms with adjustable posture for WBC calibration. *Physics in Medicine and Biology* 2014; 59(22): 6811-25.

7. Bush F. *"The integral dose received from a uniformly distributed radioactive isotope."* British J Radiol 1949. 22: 96-102.

8. Canberra. *Genie-2000 Gamma Acquisition & Analysis. Version 3.1.* Canberra Industries Inc., 2006.

9. N. Metropolis and S. Ulam, "*The Monte Carlo Method*", J. Amer. Stat. Assoc., 44, 335 (1949).

10. Fonseca T., Bogaerts R., Lebacq A., Mihailescu C. and Vanhavere F. "Study of the counting efficiency of a WBC set-up by using a computational 3D human body library in sitting position based on polygonal mesh surfaces". Health Phys. 2014 Abr;106(4):484-93. doi: 10.1097/HP.0b013e3182a414ba.

11. Fonseca T.C.F., *et al.* Estudo comparativo entre simulações de um sistema de monitoração ocupacional Interna utilizando diferentes códigos de Monte Carlo. Submetido ao jornal Radiologia Brasileira, em 30 Jan. 2015.

12. Briesmeiter, J F, et. al. MCNP-4B - A General Monte Carlo N-Particle Transport Code-Version 4B. Los Alamos National Laboratory, LA-12625-M. 1997.

13. Hunt, J G, Dantas B M, Azeredo, A M. *Visual Monte Carlo in-vivo in the CONRAD and IAEA Whole Body Counter Intercomparisons*. In. Workshop on Uncertainty Assessment in Computational Dosimetry, Bologna, 2007.

14. American National Standards Institute, Performance Criteria for Radiobioassay, ANSI N 13.30, New York. 1996.