IRRADIAÇÃO DE SIMULADOR DE BULBO OCULAR COM PLACAS OCULARES

Costa, M.R.O¹, Grynberg, S.E.¹ e Mourão, A.P.²

¹ Centro de Desenvolvimento da Tecnologia Nuclear, ² Centro Federal de Educação Tecnológica de Minas Gerais.

RESUMO

O melanoma ocular, em adultos e o retinoblastoma em crianças, são os tumores intraoculares mais comuns. A enucleação ocular, tipo de tratamento mais indicado para tumores grandes evita que o tumor primário gere metástases em outros órgãos, preservando a vida do indivíduo. Para tumores médios e pequenos a conservação das estruturas oculares pode ser feita utilizando outros tratamentos que não a enucleação, entre eles a radioterapia e a braquiterapia. O objetivo deste trabalho foi desenvolver um simulador de bulbo ocular e dois sistemas para acomodação de sementes de iodo-125 com geometrias correspondentes às das placas comerciais COMS e ROPES e, assim, realizar o levantamento da distribuição de dose no interior do simulador ocular utilizando dosímetros termoluminescentes. Constatou-se uma diferença significativa na deposição de dose para as duas configurações de sementes estudadas, provavelmente devida a um maior número de sementes em uma das placas e também provavelmente devida à diferença nas configurações das mesmas.

1. INTRODUÇÃO

Os tumores que atingem o olho frequentemente geram perdas nas funções visuais, pois promovem a opacificação de estruturas transparentes bem como o deslocamento de estruturas responsáveis pela captação da luz e envio do sinal de informação visual para o cérebro. O melanoma ocular, em adultos e o retinoblastoma em crianças, são os tumores mais comumente encontrados. A enucleação ocular, tipo de tratamento mais indicado para tumores grandes que consiste na retirada completa do bulbo ocular, evita que o tumor primário gere metástases em outros órgãos, preservando a vida do indivíduo. Para tumores médios e pequenos a conservação das estruturas oculares pode ser feita utilizando outros tratamentos que não a enucleação, entre eles a radioterapia e a braquiterapia.

Os processos de tratamento por irradiação que utilizam feixes externos (gama ou X) promovem inevitável deposição de energia nos tecidos próximos ao tumor irradiado além de danos para as lentes e outras estruturas do olho [1,2]. Por estas razões, o tratamento por teleterapia com feixes de fótons gama e X não é atualmente recomendado para o controle de tumores oculares, tendo sido substituído por processos de braquiterapia que conseguem uma melhor distribuição da dose na região ocular, gerando respostas clínicas ao tratamento mais satisfatórias.

A braquiterapia ocular utiliza preferencialmente fontes emissoras de fótons de baixa energia ou partículas beta de alta energia. No caso de tratamento por radiação gama, o uso de placas

¹ E-mail del Autor. marcos.robertto@hotmail.com

apropriadas para a alocação das sementes radioativas se faz necessário. Essas placas são posicionadas através de incisão cirúrgica, na superfície da esclera, na base do tumor para o tratamento, permanecendo em contato por alguns dias [3-5]. A Fig. 1 apresenta dois modelos de placas comumente utilizadas: a COMS e a ROPES. Esses modelos são carregados com sementes radioativas de iodo-125 ou paládio-103 ou ainda outros radioisótopos. O número de sementes utilizadas no carregamento depende entre outras coisas do tamanho das placas e no tamanho da base e altura do tumor tratado.

Figura 1. Modelo de placa ocular. a) COMS. b) ROPES.

O objetivo deste trabalho foi desenvolver um simulador de bulbo ocular e dois sistemas para acomodação de sementes de iodo-125 com geometrias correspondentes às das placas comerciais COMS e ROPES e, assim, realizar o levantamento da distribuição de dose no interior do simulador ocular utilizando dosímetros termoluminescentes.

2. MATERIAIS E MÉTODOS

2.1. Desenvolvimento do objeto simulador de bulbo ocular

O objeto simulador do bulbo ocular foi obtido a partir da usinagem de uma placa em água sólida (*Solid Water* Gamex 457) de densidade 1,04 g.cm⁻³. Este material simula a atenuação, absorção e espalhamento da radiação na água para uma vasta gama de energias. O simulador é constituído de duas semiesferas. Em uma delas há quatro sulcos, espaçados de 5 mm para a alocação dos dosímetros termoluminescentes. A Fig. 2 mostra as semiesferas confeccionadas.

Figura 2. Imagem das semiesferas.

2.2. Desenvolvimento de dois sistemas para acomodação do objeto simulador e das sementes de iodo-125

Os sistemas para acomodação das sementes de braquiterapia também foram desenvolvidos em uma placa de Água Sólida Gammex 457 usinada. Cada sulco foi planejado usando as mesmas posições das placas ROPES-15 mm e COMS-12 mm [6]. A Fig. 3 mostra os sistemas para acomodação das sementes e do objeto simulador de bulbo ocular.

Figura 3. a) Sistema correspondente à placa ROPES-15 mm e em b) à placa COMS-12 mm.

2.3. Sementes de iodo-125

As sementes de iodo-125 são muito utilizadas para a braquiterapia de um modo geral. A Fig. 4 apresenta um esquema de uma semente de iodo-125. A semente consiste de um fio de prata, com 3 mm de comprimento e 0,5 mm de diâmetro sobre o qual é adsorvido uniformemente uma camada de 0,001 mm de iodeto de prata (AgI) e então encapsulado com um cilindro de titânio de 0,05 mm de espessura [7]. O comprimento externo e o diâmetro da cápsula são 4,5 e 0,8 mm, respectivamente. Esta fonte tem comprimento ativo efetivo de 3 mm [8,9].

O iodo-125 decai no telúrio-125 através de captura eletrônica, com emissão de fótons gama e X. A maioria dos fótons emitidos pelo iodo-125 possui energia entre 27 e 31 keV, fótons de baixa energia, portanto pouco penetrantes. O período de meia-vida de uma fonte de iodo-125 é de 59,408 dias. O uso desse elemento radioativo no tratamento de tumores oculares permite a deposição de alta dose no volume a ser tratado e uma dose menor nas demais estruturas do olho [10].

As sementes de iodo-125 utilizadas neste trabalho são do modelo 6711 da *Harshaw coorporation* doadas pelo IPEN/CNEN.

2.4. Dosímetros termoluminescentes

O tipo de dosímetro termoluminescente utilizado foi o Fluoreto de Lítio dopado com Magnésio e Titânio, de fórmula química LiF:Mg,Ti, comercialmente denominado TLD-100 Rod, fabricado pela empresa *Thermo Electron Coorporation*. Para realizar as leituras das cargas acumulados nos cristais após a irradiação foi utilizado um leitor manual modelo 4500 da empresa *Thermo Electron Corporation* pertencente ao laboratório de dosimetria do CDTN. A leitora é conectada a um computador externo que possui interface que controla as ações por um software denominado WinREMS (*Windows Radiation Evaluation and Managmente System*)[11,12].

O tratamento térmico do TLD-100 foi realizado utilizando o forno *TLDO Annealing Oven* fabricado pela empresa *PTW-freiburg*. Os cristais foram submetidos a dois tipos de tratamento térmico:

- Tratamento pré-irradiação à alta temperatura: O LiF:Mg,Ti é aquecido a temperatura de 400°C durante uma hora para eliminar sinais residuais no cristal e restaurar sua sensibilidade. Após o tratamento à alta temperatura, o TLD-100 é submetido à temperatura de 100°C por duas horas. O objetivo dessa segunda irradiação é liberar elétrons dos picos de baixa energia.
- Tratamento pós-irradiação: Consiste de apenas uma etapa. Os cristais TL após serem irradiados são aquecidos no forno a uma temperatura de 100°C por 10 minutos. Este tratamento é feito com o propósito de eliminar picos instáveis de baixa temperatura na curva de emissão termoluminescente.

2.5. Coeficientes de calibração dos Dosímetros

Cada dosímetro deve possuir seu fator de calibração individual para converter carga em dose absorvida, ou seja, a leitora lê a carga em nC e através da calibração, converte-se carga em dose (cGy).

A qualidade da radiação utilizada na calibração dos dosímetros termoluminescentes foi a RQR 3, que pertence a norma 61627 da IEC. Essa radiação foi selecionada pelo fato da energia média do feixe 27,2 keV ser bem próxima do feixe de emissão das sementes de ¹²⁵I que é 29 keV. Para calibração foi utilizado o aparelho de raios-X da marca *PANTAK SEIFERT* modelo ISOVOLT 320HS, alimentado com uma tensão de 50 kV operando com

uma corrente de 2,5 mA e com filtração adicional de 2,1 mmAl. Para obtenção da taxa de kerma no ar no ponto de interesse foi utilizada uma câmara de ionização da *RADCAL CORPORATION* modelo RC 6 número de série 16951 conectada ao eletrômetro *PTW* modelo UNIDOS T10010 e número de série 001178, que fornece a carga acumulada em nanocoulomb (nC).

O coeficiente de calibração foi obtido individualmente para cada TLD, e foi determinado dividindo-se a dose depositada (15 ± 0.15 cGy) em cada cristal pela carga líquida acumulada, conforme a equação 1.

$$N_c = \frac{D}{(Q_i - \overline{Q_0})} \tag{1}$$

onde N_c é o fator de calibração individual, D é a dose depositada, Q_i é a carga acumulada em cada TLD e Q_0 é a média das cargas acumuladas nos TLDs não irradiados.

2.6. Resultados Dos Procedimentos Experimentais

Como os dosímetros foram calibrados para medição de Kerma no ar e os experimentos foram realizados em água sólida, o valor de kerma no ar foi convertido para dose absorvida na água pela multiplicação do seu valor por uma constante *k* definida conforme equação 2.

$$k = \frac{\left(\frac{\mu}{\rho}\right)_{\underline{a}\underline{g}\underline{u}\underline{a}}}{\left(\frac{\mu}{\rho}\right)_{\underline{a}\underline{r}}}$$
(2)

onde μ é o coeficiente de atenuação linear e ρ é a densidade do material. O valor de (μ/ρ) para água é 0,1186 cm².g⁻¹ e para o ar 0,1060 cm².g⁻¹, para energia de 30 keV. Logo o valor definido para constante *k* é 1,112 [13].

2.7. Correção para atividade da fonte

Como as medidas foram realizadas em dias e horários diferentes, para podermos comparar os resultados dos experimentos, corrigimos a dose absorvida na água pelo decaimento da fonte utilizando a equação 3.

$$D_C = \left(\frac{A_i}{A_0}\right) D_i \tag{3}$$

onde D_C é a dose corrigida, A_i é a Atividade da fonte no início da irradiação na i-ésima medida, A_0 é a atividade da fonte referência, atividade esta, medida no início da primeira irradiação do primeiro dia de experimento e D_i é a dose absorvida medida em cada experimento.

3. RESULTADOS

3.1. Experimento 1

Neste experimento foi realizado o levantamento dosimétrico da configuração de sementes referente à placa comercial COMS de 12 mm de diâmetro. Foram realizadas dez medições com os TLDs a 5 mm, 10 mm, 15 mm e 20 mm de distância do centro da configuração sob o seu eixo central. Durante a realização dos experimentos seis dosímetros foram utilizados para medição do *background* (BG). A Tab. 1 apresenta a carga líquida em nanocoulombs acumulada em cada dosímetro nos experimentos.

Tabela 1. Medida das cargas líquidas acumuladas nos dosímetros no experimento 1.

		Carga líquida acumulada nas medidas (nC)										
Profundidade	1ª	2ª	3 ^a	4 ^a	5 ^a	6 ^a	7 ^a	8 ^a	9 ^a	10 ^a		
5 mm	942,66	1007,1	1045,5	1137,5	1061,6	856,03	998,09	984,59	1130	1156,7		
10 mm	367,29	332,29	376,15	413,93	368,28	340,9	297,73	326,94	410,6	380,63		
15 mm	159,49	156,74	173,09	187,48	158,51	142,32	155,57	162,58	187,39	182,04		
20 mm	78,89	86,22	91,2	86,84	75,59	75,61	83,62	81,01	88,68	92,04		

Para obter a dose absorvida na água, multiplicamos a carga líquida acumulada em cada dosímetro pelo seu respectivo coeficiente de calibração (N_c) e posteriormente, pela constante k obtida através da equação 2. A Tab. 2 mostra a dose absorvida obtida em cada uma das quatro posições nos dez experimentos.

Tubera 21 mentua aub abbes abber mais na agua para e esperimento
--

-	Dose absorvida na água (cGy)										
Profundidade	1 ^a	2 ^a	3 ^a	4 ^a	5 ^a	6 ^a	7 ^a	8 ^a	9ª	10 ^a	
5 mm	8,41	7,89	7,83	8,17	7,36	7,63	7,82	7,37	8,12	8,02	
10 mm	2,96	2,44	2,74	2,91	2,54	2,74	2,18	2,38	2,88	2,62	
15 mm	1,27	1,17	1,28	1,31	1,05	1,13	1,16	1,2	1,31	1,2	
20 mm	0,62	0,64	0,68	0,57	0,51	0,6	0,62	0,61	0,59	0,62	

O tempo de irradiação para cada experimento foi de uma hora.

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

As doses corrigidas para atividade da fonte conforme equação 3 são mostradas na Tab. 3.

	Dose corrigida pela atividade da fonte (cGy)												
Profundidade	1ª	2ª	3 ^a	4 ^a	5 ^a	6 ^a	7 ^a	8 ^a	9ª	10 ^a	Média (nC)	Desvio (%)	
5 mm	7,89	7,84	8,18	7,38	7,72	7,92	7,47	7,47	8,22	8,13	7,82	3,95	
10 mm	2,44	2,74	2,91	2,54	2,78	2,21	2,41	2,41	2,92	2,66	2,6	9,13	
15 mm	1,17	1,28	1,31	1,05	1,14	1,17	1,22	1,22	1,32	1,22	1,21	6,87	
20 mm	0,64	0,68	0,57	0,51	0,6	0,63	0,61	0,61	0,59	0,63	0,61	7,45	

Tabela 3. Doses absorvidas na água corrigidas pela atividade da fonte paraexperimento 1.

A Fig. 5 apresenta o decaimento da dose com a profundidade elaborada a partir dos dados obtidos no experimento 1.

Figura 5. Curva do decaimento da dose com a profundidade - Experimento 1.

3.2. Experimento 2

Neste experimento foi realizado o levantamento dosimétrico da configuração de sementes referente à placa comercial ROPES de 15 mm de diâmetro. Foram realizadas dez medições utilizando a mesma metodologia do experimento 1. A Tab. 4 apresenta a carga líquida em nanocoulombs acumulada em cada dosímetro no experimento 2.

Tabela 4. Medida das cargas líquidas acumuladas nos dosímetros no experimento 2.

	Carga líquida acumulada nas medidas (nC)											
Profundidade	1ª	2ª	3ª	4ª	5ª	6ª	7ª	8 <u>a</u>	9ª	10ª		
5 mm	826,35	1067,8	1193,3	1084,6	936,09	1055	1084,2	1098,4	505,35	595,73		
10 mm	383,48	329,03	384,67	422,32	380,73	367,31	420,16	414,13	220,01	210,62		
15 mm	178,05	191,92	195,82	202,24	172,87	154,04	197,78	189,4	100,86	102,04		
20 mm	91,741	98,722	98,854	99,772	83,239	90,349	88,221	87,477	46,781	52,1		

A Tab. 5 apresenta as doses absorvidas para o experimento 2 e a Tab. 6 apresenta as doses corrigidas pela atividade da fonte para o experimento 2.

Tabela	5. Medida	das doses	absorvidas 1	na água i	para o exp	erimento 2.
				0 1		

	Dose absorvida na água (cGy)										
Profundidade	1ª	2ª	3 ^a	4 ^a	5 ^a	6 ^a	7 ^a	8 ^a	9ª	10 ^a	
5 mm	7,37	8,37	8,57	7,52	8,35	8,27	7,79	7,62	4,51	4,67	
10 mm	3,09	2,41	2,7	2,91	3,07	2,69	2,95	2,85	1,77	1,54	
15 mm	1,41	1,43	1,36	1,33	1,37	1,15	1,38	1,25	0,8	0,76	
20 mm	0,72	0,73	0,65	0,67	0,66	0,67	0,58	0,59	0,37	0,39	

Tabela 6. Doses absorvidas na água corrigidas pela atividade da fonte para experimento2.

_		Doses corrigidas pela atividade da fonte (cGy)										
Profundidade	1 ^a	2ª	3 ^a	4 ^a	5ª	6 ^a	7 ^a	8 ^a	9ª	10 ^a		
5 mm	8,78	9,97	10,23	8,98	10,67	10,57	9,97	9,75	7,9	8,18		
10 mm	3,68	2,88	3,22	3,47	3,92	3,44	3,77	3,65	3,1	2,71		
15 mm	1,68	1,7	1,63	1,59	1,75	1,46	1,76	1,6	1,4	1,33		
20 mm	0,86	0,87	0,78	0,8	0,84	0,85	0,75	0,75	0,65	0,68		

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

A Fig. 6 apresenta a curva característica do decaimento da dose com a profundidade elaborada utilizando os dados obtidos no experimento 2.

Figura 6. Curva de decaimento da dose com profundidade experimento 2.

3.3. Comparação entre experimentos

Ao comparar as deposições de dose para os dois experimentos observou-se que o experimento realizado com o sistema ROPES de 15 mm apresenta uma dose ligeiramente maior do que o do modelo COMS de 12 mm para as quatro posições avaliadas. A diferença percentual entre as duas chegou a 24 %. A Fig. 7 mostra esta relação.

Figura 7. Comparação entre as curvas de decaimento da dose com profundidade.

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

4. CONCLUSÕES

Um simulador de bulbo ocular e dois sistemas para acomodação de sementes de iodo-125 com geometrias correspondentes às das placas comerciais COMS e ROPES foram desenvolvidos satisfatoriamente através da usinagem de uma placa de Água Sólida *Solid Water Gammex 457*, o que resultou no levantamento da distribuição de dose no interior do simulador ocular. As doses foram medidas com dosímetros termoluminescentes em quatro profundidades diferentes, proporcionando uma curva característica de D α r⁻². Constatou-se uma diferença significativa na deposição de dose para as duas configurações de sementes estudadas, provavelmente devida a um maior número de sementes em uma das placas e também provavelmente devida à diferença nas configurações das mesmas.

5. REFERÊNCIAS

1. Group, C. O. M. S. Incidence of cataract and outcomes after cataract surgery in the first 5 years after iodine 125 brachytherapy in the Collaborative Ocular Melanoma Study: COMS Report No. 27. *Ophthalmology*, v. 114, n. 7, p. 1363-71, Jul 2007.

2. Astrahan, M. A. Improved treatment planning for COMS eye plaques. *Int J Radiat Oncol Biol Phys*, v. 61, n. 4, p. 1227-42, Mar 2005.

3. Chiu-Tsao, S. T. et al. Dosimetry of (125)I and (103)Pd COMS eye plaques for intraocular tumors: report of Task Group 129 by the AAPM and ABS. *Med Phys*, v. 39, n. 10, p. 6161-84, Oct 2012.

4. Mourão, A. P., Campos, T. P. R., Considerações radiodosimétricas da braquiterapia ocular com iodo-125 e rutênio/ródio-106, *Radiologia Brasileira*, **volume 42**, 2009.

5. Melhus, C. S.; Rivard, M. J. COMS eye plaque brachytherapy dosimetry simulations for 103Pd, 125I, and 131Cs. *Med Phys*, v. 35, n. 7, p. 3364-71, Jul 2008.

6. Poder, J. et al. ROPES eye plaque dosimetry: commissioning and verification of a ophthalmic brachytherapy treatment planning system. *7th International Conference on 3D Radiation Dosimetry*: Jornal of Physics 2013.

7. Sadeghi, M.; Hamed Hosseini, S. Study of the IsoAid ADVANTAGE (125)I brachytherapy source dosimetric parameters using Monte Carlo simulation. *Appl Radiat Isot*, **v. 68**, n. 1, p. 211-3, Jan 2010.

8. Meigooni, A. S. et al. Experimental and theoretical determination of dosimetric characteristics of IsoAid ADVANTAGE 125I brachytherapy source. *Med Phys*, v. 29, n. 9, p. 2152-8, Sep 2002.

9. Sadeghi, M.; Hamed Hosseini, S. Study of the IsoAid ADVANTAGE (125)I brachytherapy source dosimetric parameters using Monte Carlo simulation. *Appl Radiat Isot*, v. 68, n. 1, p. 211-3, Jan 2010.

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

10. Thomson, R. M.; Taylor, R. E.; Rogers, D. W. Monte Carlo dosimetry for 125I and 103Pd eye plaque brachytherapy. *Med Phys*, v. 35, n. 12, p. 5530-43, Dec 2008. ISSN 0094-2405.

11. Podgorsak, E. D. *Radiation oncology physics : a handbook for teachers and students.* Vienna: International Atomic Energy Agency, 2005.

12. Mckeever, S.W.S.; Moscovitch, M.; Townsend, P.D.Thermoluminescence dosímetro materials: properties and uses. Nuclear Technology Publishing. England, 1995.

13.NIST.Tableofmassattenuationcoefficients.Disponívelem:<</th>http://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html >. Acesso em: 30 de out. de 2014.