NATURAL OCCURRING RADIONUCLIDES IN NOVEL SAND BEACHES FROM ESPÍRITO SANTO, STATE, BRAZIL.

Aquino, R.R.¹², Pecequilo, B.R.S¹

¹ Environmental Radiometric Division, Instituto de Pesquisas Energéticas e Nucleares ² Centro Universitário das Faculdades Metropolitanas Unidas

ABSTRACT

Novel locations in Espírito Santo State, southeast Brazil, from the mouth of Itapemirim River (south of the state) to the mouth of the river Cricaré (upstate) were collected and the natural radioactivity in the beach sand samples was determined by measuring the ²²⁶Ra, ²³²Th and ⁴⁰K concentration. In these sands, the minerals from the silica group (white up to yellow) represent the major concentration and the tonal variation is a strong indication of an anomalous radioactive region. Sand samples tightly sealed in standard 100 mL HDPE flasks were measured by high resolution gamma spectrometry after a resting time of approximately 4 weeks before counting, in order to ensure secular equilibrium of natural uranium and thorium series. The ²²⁶Ra concentration was determined as the weighted mean from the average concentrations of ²¹⁴Pb and ²¹⁴Bi, the ²³²Th concentration was determined as the weighted mean from the average concentrations of ²¹⁴Pb and ²¹⁴Bi and the ⁴⁰K concentration by its single radiation of 1460 keV. The results show the higher concentrations for the south region (Marataizes), namely 860±70 Bq·kg⁻¹ for ²²⁶Ra, 2300±260 Bq·kg⁻¹ for ²³²Th and 270±40 Bq·kg⁻¹ for ⁴⁰K. For Great Vitoria central metropolitan region, the higher values were 3870±290 Bq·kg⁻¹ for ²²⁶Ra 11070±1960 Bq·kg⁻¹ for ²³²Th and 270±40 Bq·kg⁻¹ for ²³²Th and 110±10 Bq·kg⁻¹ for ⁴⁰K.

1. INTRODUCTION

The main external source of irradiation to the human body are the natural occurring radionuclides elements in the soil and rock, namely 40 K and the radionuclides from 238 U and 232 Th series present throughout the Earth's crust [1].

Brazil is among the countries with the largest and most important deposits of these minerals on Earth. The largest anomalies in the concentration of thorium in soil in Brazil are deposits of monazite sands in Guaraparí, Municipality of metropolitan region of Espírito Santo (southeast of Brazil) [2, 16].

Favored by geographical conditions and ancient sedimentary processes, the Epírito Santo estate has the constitution of their sands, minerals such as ilmenite (FeTiO₄), monazite ([Ce, La, Nd, Th]PO₄), rutile (TiO₃) and zirconite (ZrSiO₄), natural sources of minerals such as 40 K, 232 Th and 238 U, responsible for the activity detected and increased background radiation [2-3].

Three sampling locations were selected considering the tonal differentiation of the sands and geographic position in relation a local river mouth (the sedimentary and cumulative processes may be favored by the rivers): Guriri beach in São Mateus Municipality (upstate) nearby of

¹ Corresponding author: raquino@ipen.br

Cricaré River, Curva da Jurema Beach in central region of Vitória (several river mouths) and Marataízes beach in Marataízes Municipality, nearby of Itapemirim River (Figure 1).

Figure 1. Sampling locations.

In this work, novel locations in Espírito Santo state, southeast Brazil, from the mouth of Itapemirim river (south of the state) to the mouth of the river Cricaré (upstate) were collected and the natural radioactivity in the beach sand samples, was determined by measuring the ²²⁶Ra, ²³²Th and ⁴⁰K concentration activities, establishing a comparison with other regions already studied in the state of Espírito Santo, comparing with Brazilian and world averages.

2. MATERIALS AND METHODOLOGY

2.1. Sampling Collection and Preparation

In the sampling process, the location was selected considering the apparent tonality variation, which suggest concentration of black sands (ilmenitics mineral) and red to brown sands (monazitics sands).

Superficial black sands samples were collected with a 2 cm a depth on black spots. After manually removing macro-impurities (like shells, pebbles, food leftovers), the sands were dried at 80°C for 24h, and therefore sealed in 100-mL HDPE flat-bottom cylindrical flask and stored for approximately 4 weeks before counting, in order to allow the reaching of secular equilibrium in the ²³⁸U and ²³²Th series [4]. For each location, the samples were prepared in triplicate.

2.2. Measurements

All samples were measured by high resolution gamma spectrometry with a coaxial highpurity germanium detector (HPGe) of 15% relative efficiency with conventional electronics and a 919 ORTEC EG&G Spectrum Master 4k multichannel analyzer. The measured resolution for the ⁶⁰Co 1332.5 keV is 2.9 keV. The HPGe detector and the samples were placed inside a conventional lead shield, with 10 cm of thickness and the counting time for all samples was 1000 s. All spectra were analyzed with the WinnerGamma software [5].

The activity concentration of a single transition is classically calculated as in Expression 1[4]:

$$A(x) = \frac{C(E)}{P_{\gamma}(E) \cdot \varepsilon(E) \cdot m \cdot t}$$
(1)

Where A(x) is the activity of the considered gamma transition of the isotope "x" in the sample (Bqkg⁻¹), C(E) is the net number of counts obtained for the gamma transition with energy (E) emitted by "x", P γ (E) is the probability of emission of the gamma transition with energy (E), ϵ (E) is the detector efficiency for the considered gamma transition, m is a sample mass (kg) and t is the counting time in seconds. The radionuclides and respectively gamma transitions are shower in the Table 1.

Nuclide		E (Energy) [keV]	Ργ(E) [%]	
²²⁶ Ra	²¹⁴ Db	295.21	18.70	
	ΓŬ	351.92	35.80	
	²¹⁴ Bi	609.32	45.00	
²³² Th	²¹² Pb	238.63	43.50	
		300.09	3.25	
	²¹² Bi	727.33	6.64	
	²²⁸ Ac	911.07	27.80	
		968.90	16.74	
⁴⁰ K	40 K	1.460.83	10.67	

The activity concentration Ac in Bqkg⁻¹ is determinate by de pondered mean applied to the values of activity concentration for a single transition in according with the Expression 2:

$$Ac = \frac{\sum_{i=1}^{n} \frac{A_{i}(x)}{\sigma_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}$$
(2)

Where σ_i is the uncertainty associated with activity concentration for a single transition in Bqkg⁻¹. The associated activity concentration σ_c is determinate in according with the Expression 3;

$$\sigma_{c} = \frac{1}{\sqrt{\sum_{i=1}^{n} \frac{1}{\sigma_{i}(x)^{2}}}}$$
(2)
(3)

Where $\sigma_i(x)$ is an uncertainty associated with activity concentration in Bqkg⁻¹.

The background radiation was determined by measuring a high purity water sample in the same geometry as the sand samples.

The detector efficiency curve was determined with a standard multi-radionuclide aqueous solution in the same geometry as all measured samples. The high-resolution gamma spectrometry methodology and the detector efficiency curve are regularly verified through proficiency tests [5].

All nuclides activities are given with uncertainty statistics at $\pm 1\sigma$ confidence level. Detections limits are given at $\pm 2\sigma$ confidence level with the GTN5 formulae.

3. RESULTS AND DISCUSSION

The results show the higher concentrations for the south region (Marataizes), namely $860\pm70 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{226}Ra , $2300\pm260 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{232}Th and $270\pm40 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{40}K . For Great Vitoria central metropolitan region, the higher values were $3870\pm290 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{226}Ra $11070\pm1960 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{232}Th and $270\pm40 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{40}K . For the upstate region (Guriri), the higher values were $60\pm5 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{226}Ra , $80\pm10 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{232}Th and $110\pm10 \text{ Bq}\cdot\text{kg}^{-1}$ for ^{40}K .

The measured values and other literature comparative values to the concentrations values of 40 K, 232 Th and 226 Ra, together with their standard deviations, are represented in Table 2.

Beach Location	Municipality	⁴⁰ K	²³² Th	²²⁶ Ra	Ref.
Present Work*		Bq∙kg ⁻¹	Bq∙kg ⁻¹	Bq∙kg ⁻¹	
Guriri Beach	São Mateus	110±10	80±10	60±5	*
Marataises Beach	Marataises	270±40	2300±260	860±70	*
Curva da Jurema Beach	Vitória	970±120	11070±1960	3870±290	*
Other locations in Espírito Santo State					
Preta Beach (Black Spot)	Guarapari	4320±570	37000±2600	2880±215	[11]
Camburi Central	Vitória	380±20	4160±260	755±40	[11]
Ilha do Boi Beach	Vitória	150±20	1100 ± 80	297±76	[11]
Ilha do Frade Beach	Vitória.	2200±300	19800±1300	3220±200	[12]
Average values for other locations World					
Cuba		188±10	15.6±1.1	16.7±1.2	[6]
Egyptian		385±8.9	27±4.2	33±3.7	[7]
China		809.8±207.1	35.5±11.0	23.0±6.6	[8]
India		210.1-607.0	37.0-163.0	9.6-53.0	[9]
Japan		611.2-1176.0	10.2-33.7	29.2-46.3	[10]
Brazil		51-809	7,1-213	10,2-116	[13-15]
	World	400	30	35	[1]

Table 2. Measured results and literature comparative values for activity concentrations.

** Measurements with 68% ($\pm 1\sigma$) confidence level, k=1

The measured values in upstate, central e south regions of the Espírito Santo State are very high in relation of other places in the World.

For comparative effect, the measured values and the Brazilian and World averages are shown in a Figure 2:

Figure 2. Measured values and comparative average values.

The activity concentration in Curva da Jurema Beach (central region of Espírito Santo State) for ²³²Th is 50 times higher than a Brazilian average and, 370 times higher in relation a World average for this radionuclide. For the activity concentration in a same region to the ²²⁶Ra, is 33 times higher in relation a World average and 110 times higher in relation a Brazilian average for this radionuclide. For the ⁴⁰K, the values are around 2.5 times highs in relation the World and Brazilian averages. For all reasons the values are very high for a natural background radiation in the considered region.

For the Guriri Beach (upstate region of Espírito Santo State), the results showed 3 times higher in relation the World average for the ²³²Th, 2 time higher for the ²²⁶Ra and 0.5 times high. In relation a Brazilian average, these values are approximately equals varying around 0.1 and 0.5 times more than the considered literature average.

In Marataizes Beach (south region of the Espírito Santo State) the values determined to ²³²Th in relation a Brazilian average is a 10 times higher and 77 times higher in relation a World average. The ²²⁶Ra in relation a Brazilian average is a 7 times higher and 25 timer higher in relation of the World average.

4. CONCLUSIONS

The activities concentrations of ²²⁶Ra, ²³²Th and ⁴⁰K in Marataízes Beach, Guriri Beach and Curva da Jurema Beach in Espírito Santo state, southeast of Brazil, were evaluated by high resolution gamma-ray spectrometry.

The highest activity concentration has been observed for Curva da Jurema Beach in central region of the Espírito Santo State. The measured values for this location are high considering the world average values [1].

The values determined for activity concentrations of ²³²Th in the sand samples showed that a major mineral constituent in the analyzed samples is the monazite sand.

4. REFERENCES

- 1. UNSCEAR, "Sources and effects of ionizing radiation", *United Nations Scientific Committee on the Effects of Atomic Radiation*, United Nations, New York (2000).
- 2. AQUINO, R. R.; PECEQUILO B. R. S. Avaliação da Radioatividade Natural em Areais de Regiões Anômalas do Espírito Santo. In: II Congresso Brasileiro de Proteção Radiológica. RADIO2011, 2011, RECIFE., Anais...RADIO2011, (2011)
- AQUINO, R. R.; PECEQUILO B. R. S. Natural Radioactivity Content and Dose Assessment in a "Black Spot" Sand Non-Studied New Location in Espírito Santo State, Brazil. In: 13th International Congress of the International Radiation Protection Association. RADIO2011, 2012, RIO DE JANEIRO., Anais...ISRP2012, (2012)
- 4. KNOLL, G.F., *Radiation Detection and Measurement*, **Third Printing**, New York, United States (1999).
- 5. ORTEC, InterWinnerTM6.0 MCA Emulation, Data Acquisition, and Analysis Software For Gama and Alfa Spectroscopy, TOMCOM Software Ltd., (2004).
- 6. FLORES O. B., ESTRADA A. M. e ZERQUERA J.T., "Natural radioactivity in Some Building Materials in Cuba and Their Contribution to the Indoors Gamma Dose Rate", *Radiation Protection Dosimetry*, **v.113**, 218-222, (2004).
- MEDHAT M.E. "Assessment of Radiation Hazards Due to Natural Radioactivity in Some Building Materials Used in Egyptian", *Radiation Protection Dosimetry*, v. 133, p.177-185, (2009).
- 8. XINWEI L. e XIAOLAN Z., "Radionuclide Content and Associated Radiations Hazards of Building Materials and By-Products in Baoji, West China", *Radiation Protection Dosimetry*, **v.128**, p.471-476, (2007).
- SOWMYA M., SENTHILKUMAR B., SESHAN B. R. R., HARIHARAN G., PURVAJA R., RAMKUMAR S. e RAMESH R., "Some natural radioactivity and associated dose rates in soil samples from Kalpakkam, South India", *Radiation Protection Dosimetry*, v.141, 239-247, (2010).
- HASSAN N.M., ISHIKAWA T., HOSODA M., SORIMACHI A., TOKONAMI S., FUKUSHI M. e SAHOO S.K., "Assessment of the natural radioactivity using two techniques for the measurement of radionuclide concentration in building materials used in Japan", *J Radioanal Nucl Chem*, v. 283, p.15–21, (2010).

X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica, 2015

- 11. AQUINO, R. R.; PECEQUILO B. R. S. "Avaliação da Radioatividade Natural em Areais de Regiões Anômalas do Espírito Santo", *II Congresso Brasileiro de Proteção Radiológica*, RECIFE., **Anais**...RADIO2011, (2011)
- 12. AQUINO, R. R.; PECEQUILO B. R. S. "Natural Radioactivity Content and Dose Assessment in a "Black Spot" Sand Non-Studied New Location in Espírito Santo State, Brazil", 13th International Congress of the International Radiation Protection Association, RIO DE JANEIRO, Anais...ISRP2012, (2012)
- 13. ALENCAR A.S. e FREITAS A.C., "Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region", *Radiation Measurements*, v.40, 73-83, (2004).
- MALANCA A., PESSINA V., e DALLARA G., "Radionuclide Content of Building Materials and Gamma Ray Dose Rates in Dwellings of Rio Grande Do Norte, Brazil", *Radiation Protection Dosimetry*, v. 48, p.199-203, (1993).
- 15. UNSCEAR, "Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, United Nations", New York, 2008.
- 16. EISENBUD, M. "Environmental radioactivity", 2nd ed. Academic Press, Orlando, (1987).